
 Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

19

SE and CS Collaboration: Training Students for Engineering Large, Complex
Systems

Mohammad Nauman1 and Muhammad Uzair2

1City University of Science and Information Technology, Peshawar, Pakistan.
2NWFP University of Engineering and Technology, Peshawar, Pakistan.

Abstract: Today’s software industry is characterized
by fast growth and diversity. To engineer software in
such an environment, software engineers are required
to work with large teams and handle large complex
systems, involving common off-the-shelf components,
open source software and outsourced resources. This
poses a serious challenge for software engineering
institutions.
In this paper, we outline a framework for collaboration
among computer science and software engineering
programmes within a university with the goal of
training students for engineering large, complex
systems. We chart a three phase layout for the
framework in which students of both programmes work
together to simulate the industry’s practices by
designing, building, integrating and testing a large,
complex system.
We consider the issue of evaluating students in such a
framework and give alternatives for certain variables
so as to fit the framework in different environments.

Keywords: Software engineering, computer science,
education, complex systems

1. INTRODUCTION
Software engineering education has come a long

way and is no longer in its infancy. There are several
forums working on the curricula and pedagogical
issues related to software engineering education.
Among these are the SIGCSE Technical Symposium on
Computer Science Education and the Conference on
Software Engineering Education and Training.
Detailed layout of program and course contents have
been developed by many universities.

Despite all of this, there is still a large gap between
the techniques taught to the university students and
those practiced by the industry to fulfil the
requirements of their clients [1]. The problem is
multifaceted.

The software industry requires software engineers
to be able to build very large, complex systems in a
short span of time. Not only that, it also requires them
to build software using outsourced human resource,
common off-the-shelf components or even through
modifying open-source parts developed elsewhere [2].
Software engineering, in other words, is moving
towards its engineering aspect faster than ever.

Students studying software engineering are taught
the latest techniques and practices but upon exposure to
the industry, they find that other techniques are

employed there. Software practitioners on the other
hand, employ techniques they learn through experience
as those they learned during their education are of little
use in the industry. This leads not only to a waste of
teaching time but also means that sub-standard
techniques are employed by the industry.

In this paper, we identify the sources of this
problem and discuss some techniques employed by
other researchers to address it. We then develop a
framework as a solution to this problem and compare it
with the related techniques. Finally, we give an insight
into the future prospects of this research.

2. PROBLEM OVERVIEW

2.1. The problem of size and time
The difference between software engineering

taught in educational institutions and that practiced in
the industry is mainly that of size [3]. Most educational
institutes carry out a final project in which students are
expected to engineer a software project. This project is
usually kept small enough to be completed within the
semester’s time. Following such a technique means
that students are rarely exposed to large and complex
systems and thus fail to appreciate the difference in
techniques required for small, fairly simple and large,
complex systems. So, through the problem of size, we
identify that there is also an issue of available time.

2.2. Gap in industry and academia
Several studies have been carried out to identify

the solution to this problem. The gist of these is that
there is a gap between practices of the industry and
instruction in the academia [5]. This gap needs to be
filled either by bringing practitioners to the students or
by exposing the students to the industry through
internships. Both of these solutions are difficult to
implement – again because of the issues of complexity
and available time.

Another solution is to simulate the environment of
the industry within the educational institutions through
carefully designed programmes.

In related works, we discuss some of the
techniques previously employed to bridge this gap.

2.3. Diverse nature of skills required
Third facet of the problem is the diverse nature of

skills required to become a software engineer. [4]
identifies skills in which a good software engineer

 Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

20

requires expertise. These range from computer science
and project management to communication and
interpersonal skills. Acquiring all these skills is never
easy for a student and makes it very difficult for
instructors to design a course encompassing all these
skills.

3. RELATED WORK
To train students for handling large, complex

systems, several universities have developed strategies
of diverse natures.

[3] have employed a cross-term, cross-team
educational software process to educate students in
engineering very large systems. The process involves
students of subsequent batches on the same project
starting from students of one batch who are required to
produce certain deliverables in the form of software
engineering artifacts. The students of next batch
continue from the point in the process where the
previous batch left off. Students work with all aspects
of software engineering and can appreciate the
complexities involved in engineering a very large,
complex software system.

[5] have used a technique of involving students in
a rigorous 8 semester Software Factory in which each
student gains experience in every participatory role of
the software lifecycle. These include requirements
gathering, software engineering, project management,
software testing and all other associated roles.

A unique solution has been proposed and
implemented by [6]. The students create three games in
one semester. They are allowed to work more and more
independently as they progress through the semester
until finally, they create the last game completely on
their own. Games were chosen by the institute because
of their complexity and high software engineering
demands. One downside of this approach is that the
students on which this technique was applied were
domain experts in game development and this
technique can therefore not be used for all software
engineering students.

All three of these techniques try to teach students
all aspects of software engineering through their
projects. We propose that a distinction be made
between what is being done correctly in the institutes
and what is not. A framework can then be developed
which focuses on the deficiencies of current
pedagogical techniques to bridge the gap between
academia and industry. In the rest of the paper, we
develop our framework by identifying these
deficiencies.

4. CS AND SE COLLABORATION
TECHNIQUE

4.1. Background work
The problem of size and complexity of the nature

of software engineering education engineering requires
that such a distinction be made regarding what aspects
of SE education are the most important. These should

then be given a preference in software engineering
education curricula and in the projects that students are
expected to complete.

[7] carried out an extensive survey on practitioners
in the industry and identified some aspects of software
engineering upon which colleges and universities need
to focus more. These were the aspects that the surveyed
practitioners felt were most important for them but
were under-emphasized in the academia. Among the
top ten of these aspects were:

• Testing and quality assurance
• Maintenance
• Project management
• Object oriented analysis and design
• Requirements gathering
There were also some aspects which, according to

the surveyed practitioners, were over-emphasized in
the curricula. Among these were:

• Numerical methods
• Programming language theory
• Complexity and algorithm analysis
A study of the results of the survey leads to the

conclusion that all the subjects normally associated
with computer science, are over emphasized in the
educational institutions while those normally
associated with software engineering are under-
emphasized.

The authors conclude that more attention needs to
be given to the under-emphasized courses. Problem
remains that these are vast subject in their own right
and are difficult to be covered in full detail in the given
amount of time.

From among the aspects identified as being under-
emphasized in software engineering education, we
focus on object oriented analysis and design, project
management and testing in our framework.

Now we give the layout of our framework for
collaboration among CS and SE programmes.

4.2. Separating concerns of CS and SE
Although software engineering and computer

science are practically inseparable, their scope is
different. A limit has to be defined as to how much a
software engineer needs to know of computer science
technicalities such as programming language theory
and algorithm analysis. As is clear from the survey
described in background work, software engineering
education institutions need to focus more on software
engineering aspects of their curricula in order to
produce graduates better suited for today’s software
industry.

Concerns of software engineering courses and
computer science courses are separate [10] and the
final projects need to reflect this separation of
concerns. In the software industry, software engineers
are never coders. Low level implementation is strictly
the job of programmers. Software engineers need to
work with programmers and programmers need to

 Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

21

understand how to take the artifacts of software
engineering processes and turn them into quality code.

4.3. A collaboration framework
In our framework, we propose the simulation of

this aspect of the industry through collaboration of two
separate programmes in a university offering
undergraduate and graduate courses in both software
engineering and computer science.

We divide the framework in three phases.
Education institutions can implement each phase in one
semester.

4.4. 1st phase
For the first phase of the framework

implementation, a large complex system is decided
upon by the instructors of both computer science and
software engineering courses. The software system
should be complex enough so that only the system
analysis and design can be completed by the students in
a semester’s time.

The main aim of this phase is to help students
become proficient in object oriented analysis and
design – an important part of software engineering
practices in the industry today [11].

The students of software engineering programme
are given the specifications and are expected to
complete the system analysis and design by the end of
this phase. The goals of this phase would be for the
students to:

• produce, a complete system design by the end
of the phase,

• identify any common off-the-shelf
components or open source components that
can be reused in their system and

• give complete specifications (including
functional and non-functional requirements as
well as any integration specifications) for any
components that they need developed by the
programmers.

The artifacts of this phase become the inputs for
the second.

Computer science students are not involved in this
semester.

4.5. 2nd phase
In the second phase of the framework, the

specifications developed in the first phase are given to
computer science students. Only the components that
need to be developed or modified are given to the
students who work throughout the phase to complete
the components. The goals of this phase for the
students will be to:

• create the components exactly according to
the specifications,

• modify any open source components that need
to be modified for reusability and

• create interfaces for future integration of the
components

The components developed in this phase will be
integrated to create the whole system in the next phase.

The students of software engineering are not
involved in this phase.

4.6. 3rd phase
In the third phase, students of software engineering

and computer science programmes work together for
the integration of the components into the system. In
this phase, the emphasis will be on:

• Team work
• System integration
• System testing
• Quality assurance
Each team of computer science programme is

assigned to a team of software engineering programme.
They work together to produce the final project by the
end of the phase.

5. EVALUATION AND ASSESSMENT
Assessment of students in the first and second

phase is based on the artifacts produced and on
achievements of goals specified.

Evaluation of software engineering students in the
third phase is based on compliance with requirements
and quality of the software. Both the functional and
non-functional requirements are considered. The
evaluation of computer science students in this phase is
based on technical aspects of their work such as
correctness, performance and modifiability of produced
components etc.

6. ISSUES ADDRESSED BY THE
FRAMEWORK

The framework we have proposed addresses the
following issues:

• Project management is addressed through
having students create a complex system
through almost all the stages of design and
development.

• Environment of the industry is simulated by
having students collaborate not only with their
team members but also with other teams.

• Faculty peer collaboration is facilitated by
having instructors of computer science and
software engineering work together.

An important fact to be noted is that our
framework spans only three semesters. The rest of the
coursework can (and should) focus on aspects and
standards of software engineering principles. This
would ensure that the students learn to cope with the
industry while still learning the principles that aid the
engineering of quality software [8].

7. ALTERNATIVES AND OPTIONS
The layout described above is only a general view

of the framework. The framework can be modified to

 Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

22

suit the requirements and environment of a specific
university. We give some of the variables which can be
changed in the framework.

• The number of semesters can be increased to
accommodate requirements engineering in the
activity.

• Instead of providing students with
requirements for a “fake” system, the industry
can be involved and real problems can be
solved through this framework. Requirements
can be articulated by involving community
partners in the project [9].

• Students of different universities can be
brought together in a joint venture by the
universities to further diversify the nature of
the activity.

8. ISSUES
There are certain issues associated with the use of

this framework:
1. Requirements gathering and maintenance, two

important aspects of software engineering are
not covered at all. We believe that
requirements engineering is a vast subject and
would require far more time than our
framework in its basic form can
accommodate. This issue can, however, be
addressed if the span of the framework is
increased as discussed in alternatives and
options. Maintenance on the other hand is one
of those aspects of software engineering
which are very difficult to teach in software
engineering courses because of its nature in
terms of extended periods of time. We cannot
accommodate maintenance in our framework
but believe that it is a separate concern which
should be addressed elsewhere.

2. Inputs of one team based on outputs of
another team. This is an important point and
should be kept in mind during evaluation. It is
however, our approach that to simulate the
actual environment of the industry, such
variables should not be eliminated. In an
industry, a software engineer has to deal with
a lot of variables among which the skill of
programmers is an important one. Similarly,
since programmers have to deal with
specifications provided by software engineers
in the industry, this simulation is an accurate
one for them too.

9. Vision for future
This framework is an outline of the plan we have

for collaboration among students of computer science
and software engineering. We plan on working on the
specifications of the framework and identifying more
variables in the following areas:

1. Identifying a large scale system which can
be built in three semesters' time span while

still being complex enough to give a taste
of today’s software industry.

2. Clarifying variables for evaluation of the
students throughout the framework.

3. Implementing the framework on
graduate/undergraduate students of City
University to evaluate the success of the
framework.

10. CONCLUSION
The highly dynamic environment of today’s

software industry requires software engineers to work
with large teams and handle large complex systems
involving common off-the-shelf components, open
source software and outsourced resources. This poses a
great challenge for the educational institutions as there
exists a gap between practices of the software industry
and techniques taught by the academia.

In this paper, we have identified some of the
sources of this problem and have outlined a framework
which can be adopted to address these issues by
creating collaboration among students of software
engineering and computer science.

Our three-phase framework complements the
fundamental traditional course work by providing the
students an opportunity to enhance their skills through
the process of engineering a large, complex system. It
will enable the students to realize the nature of work,
environment, skills and techniques employed in
practice by the software industry. We have also
outlined goals for future work in this framework.

REFERENCES
[1] M. Shaw, J. Herbsleb, and I. Ozkaya, “Deciding

what to design: closing a gap in software
engineering education,” in Proceedings of the 27th
international Conference on Software
Engineering, 2005, pp. 607-608.

[2] M. J. Hawthorne, D. E. Perry, “Software
Engineering Education in the Era of Outsourcing,
Distributed Development, and Open Source
Software: Challenges and Opportunities”, in
Proceedings of ICSE 2005, ACM.

[3] Chang Liu, "Enriching Software Engineering
Courses with Service-Learning Projects and the
Open-Source Approach," in the 27th International
Conference on Software Engineering (ICSE'05),
2005.

[4] Freeman, P., “Essential Elements of Software
Engineering Education,” IEEE Trans. on Software
Engineering, SE-13, 1987, pp. 1143-1148.

 Journal of Independent Studies and Research (JISR)
Volume 5, Number2, July 2007

23

[5] J. Tvedt, R. Tesoriero, K. Gary, “The Software
Factory: Combining Undergraduate Computer
Science and Software Engineering Education”, in
Proceedings of the International Conference on
Software Engineering 2001 (ICSE 2001).

[6] E. Sweedyk, and R. M. Keller, “Fun and games: a
new software engineering course” in Proceedings
of the 10th Annual SIGCSE Conference on
innovation and Technology in Computer Science
Education, ITiCSE '05. pp. 138-142.

[7] Timothy C. Lethbridge, “The relevance of software
education: A survey and some recommendations”,
Annals of Software Engineering, Volume 6, Issue 1
- 4, Mar 1998. pp. 91

[8] C. Ghezzi, and D. Mandrioli, “The challenges of
software engineering education”, in Proceedings
of the 27th international Conference on Software
Engineering. ICSE '05. ACM Press, New York,
NY, 2005.

[9] C. Liu, C., "Partnering with and Assisting
Community Partners in Service Learning Projects
to Tailor and Articulate Project Requirements,"
abstract accepted by the 2005 Frontiers in
Education Conference 2005, Indianapolis, Indiana,
USA, October 19 - 22, 2005.

[10] W. Mitchell, “Is software engineering for
everyone?” in Proceedings of the 2nd Annual
Conference on Mid-South College Computing.
ACM International Conference Proceeding Series,
vol. 61. 2004, pp. 53-64.

[11] P. Ciancarini, “On the education of future
software engineers”, in Proceedings of the 27th
international Conference on Software
Engineering, ICSE '05. ACM Press, New York,
NY, 2005, pp. 649-650.

